Appears inFourteenth IEEE Automated Software Engineering Confer@h8E-99), October 1999. pp 63-72

Best paper award.

Automatic Generation of Test Oracles
- From Pilot Studies to Application

Martin S. Feather
Jd Propulsion Laboratory,
California Ingitute d Technology
4800 Oak Grove Drive
Pasadena, £91109, USA
+1 818 354 1194
Martin.S.Feather@Jpl.Nasa.Gov

Abstract
There is a trend towards the incredsese of automation *®
in V&V. Automation can yield savings in time and effort.
For critical systems, where thorough V&¥ required,
these savingican be substantial.
We describe a progression from pilot studies to
development ahuse of V&V automation. We used pilot
studies to ascertain opportunities for, and suitability of,
automating various analyse whose results would
contribute to V&V. These studieculminated in the
development of an automatic generator of automated test
oracles. This was then applied and extended in the course
of testing an Al planning systethat is a kg component
of an autonomous spacecraft.
Keywords: Test Oracles, Verification and Validation, <
Analysis, Planning, NASA

1. Introduction
Cost, performace ad functionaliy concerrs are
driving a trend towards use of self-sufficient autonomous
systems n pace of human-controlled mechanisms. °
Verification ard validation (V&V) of such systems is
particulary crucial given thathey will operate for long
periods with little or no human supervisiofurthermore,
V&V must itself be doe a low cost, rapidy and
effectively, even as thsystems to which it is applied
grow in complexiyy and sophistication. .
Spacecraft — especiglteep space probes — exemplify
thee oncerns. We have been involved in V&V of an Al
planner that § a key component of a spacecraft’s
autonomous control system. In [8] we report our use of an
automatd generator of automated test oracles to support
these V&V activities. Th paper is organized to sivahe
progression of steps we followed leading up to this
application, and the lessons we have leagntdflecting

Ben Smith
d€ropulsion Laboratory,
California Irt¢ute of Technology
4800 Oak Grove Drive
PasadenaA®1109, USA
+1 818 353 5371
Ben.D.®r@Jpl.Nasa.Gov

upon our experience:

First pilot study: rapid automated analysis (Section 2).
In this dudy we determined the viabilit of a rapid
analysis approach. We did case studies of two kinds of
traditional design information, yielding confirmation of
the viabiliy of the analysis method for this kah of
information.

Second pilot study: application to an autonomous
planne (Section 3). We needed shsecond stugl to
determine suitabilit of the rapid analysis approach to,
specifically, checking plaagenerated ypan Al planner.
Particular concerns were scalalyildf the approach, and
investment of domain experts’ time. dlpilot study
produced instances of automatic test oracles.

Development of automalegenerator of planner test
oracles (Section 4). Based on the lessons learned from
the secod pilot study, we committed to developing a
tod to be used in actual spacecraft testing. The tool
would go heyond tle @pabilities of the secah pilot
study by both extending aspects of ethanalyses
performed, and automating the generation of the test
oracles themselves.

Application to V&V of spacecraft planner (Section
5). We applied the tool during spacecraft planner testing.
Using it, we decked thousands of test cases for
adherence to hundred$ ftight rules. Additionally, we
extended it to perform additional validation checks of
particulary complex rules.

Lessons learned (Section 6). We describe lessons
learned for both software engineering and V&V:
e Our experience re-iterate several well-
understood virtues of pilot studias a precursor
to actual development.

« When domain experts’ time is a critical resource,
follow an "on-demand policy of knowledge
acquisition.

* V&V can make good use of redundancy and

rationale, to increase assurance in the V&V
results, and @ assig in the developmentf ¢he
V&V technology itself.

e The use of a database the underlying analysis
engine has practical applications and benefits.

» Test oracle dould yield result with far more
content and structure than simply “passed” or

Hailed”. i . i design information.
* Translation between notatienis a recurring 3 petermining V&V conditions and expressing them as
need, and ideally should be done in such a way 45tapase queries.
as 'to support unders.tanding, specificatiand 4. Analysis, performed Y evaluating the V&V
maintenance by domain experts. _ conditions as database queries agaihe data. The
. CQI’\C|US}IOI$ (Section 7). We summarize the reportig o the quey results was organized into
relationshp o our work © aher efforts, and point to confirmations and anomateports
areas we believe are woytbf additional attention. The pilot stug examined two sets of design documents
* Further detad of the second pilot styd(Appendix _ interface diagram (i.e., summaries of incoming and
A). outgoing connections of software modules) and test logs
* Further detad of the development (Appendix B). (i.e., traces of behaviors generated in testif the
softwale mmponents in simulations). Modest verification
conditions were rapigiland successfyllanalyzed in this
manner.

design information.

2. Loading the design information into éhdatabase.
Thiswas maé apredominantf automated operation, by
constructing special-purpose programs to extract
information from design documents and translate into
the format of the database schema. Automation made the
approach practical for handirvduminous amounts of

2. First pilot
analysis

The first stage was a pilot swudha investigated 2.1. Conclusions drawa from first pilot study
analysis of simple properties of spacecraft designs. This
was conducted in egrll997, primariy by the first author
who, while not an experin spacecraft, had access to
spacecraft desigdocumens and spacecraft experts. The
purpose of this first stydwas to answer the following
question:

study: rapid automated

Overall, the pilot stug answered its original question
affirmatively.

The databas ®uld readiy be used to represent
existing design information, nd populating the
database with thanformation could be automated with
little effort.

» Database queries could be used to perform simple
analyses. Té aeation of these queries was a relatively
straightforward, albeit manual, task.

The dficiency of the database wasifficient for the
volume of information dealt with in these pilot studies.
However, questionremained about the scalalylipf
the approach. In particular, chedyiproperties of very
large log files was anticipated to reauira more
efficient encodig o those properties. A state-machine

based approach, e.g., [2] or [5] would

Could simple analysgof spacecraft design
information be performed rapidly by using a
database athe underlying reasoning engine?

The approach under investigation was fouhdgon
the use of alatabasess the underlying reasoning engine.
We used APS5 [3], a research-qual#dvancd database
tool developed tathe Universiy of Southern California.
The achitecture of this approack #own in Figue 1. Its
four main steps were:

1. Manual creation of a database schema to représen

V&V conditions design perhaps be more appropriate in such
DESIGN] information circumstances.
DOCUMENT For further detad see [7].

2. Automatic, o
semi-automatic
loading of
database

Database schema

1. Manually created

> DATABASE
Database querie

3. Secod pilot study: V&V of
an autonomous planner

The need arose to perform V&V of
<« autonomos gacecraft control systems.
Data The rapid analysis approach of the first
pilot studs was identified as having
potential application hereA secom pilot

3. Manual
translation

+ 4. Automatic analysis

Query results (confirmations anomalies)
Figure 1 — Architecture of First Pilot Study

study was conducted to investigate this
potential. Thé <ction provids me
backgroun on the autonomos gacecratft,
and then summarizesahtudy.

rapidly applied to automate checking the
planner's generated plans agaimsts temporal
constraints?

3.1 An Autonomous Spacecraft

NASA’s “New Millennium” series of spacectafis
intended to evaluate promising wmetechnologies and

. . p . Could this be done without a large
instruments. Tafirst of these, “Deep Space 1" (DS1) [6], investment of time by planner experts?
was launched in 1998. Increased autopash one of We etered into ths sudy with a reasonable

severdinnovative goals that DS-1 will demonstrate [12].
The “‘Remote Agent” [10, 11] will be the first artificial
intelligence-based autongnarchitecture to reside in the
flight processor of a spacecraft and control it for 6 days
without ground intervention. BhRemote Agent achieves
its high level of autonognby using an architecture with
three kg modules:

expectation of success. @lplanner hasa be able to
generag plans; is constraimn language is crafted to
simultaneousl ease tb epression of certain constraints,
and limit the form of expression to thosettitacan readily
handle. Conversely, the databaseydmds b be able to
evaluate queries about a specific set of data, a far easier
i , i task than the search-intensive task of planning. The
an integrated planning and scheduling system thatysiapase qugdanguage is an extensible, general-purpose
generate equences of actions (plans) from high- |3nguag ad so show be @pable of straightforwardly
level goals, ~ expressing the planner constraints. The relative

a intelligent executive that carries out those actions computational simplicit of checking vs. planning (an

and can respond to execution time anomalies, and

a model-based identification and recovsystem that

identifies fauls and suggests repair strategies.
The planner is a critical component of the autonomy
architecture. TA @mmand sequences genedatsy the
planner direct navigation, attitad ontrol, power

instance of Blum's notion of "simmldheckel [16]) also
suggested that the development of a sufficjeefficient
checker would not itself become a large development
effort.

Figure 2 shows # achitecture of the approach
followed in this second pilot study.

allocation, etc. The entire mission could be jeopardized by As before, it is organized into four main stages:

an error in a command sequence pertaining yoéthese

areas. For example, the June 1998 loss of contact with the

Solar and Heliospheric ObservatdSOHO) spacecrafs
believed to have involved "err®rin preprogrammed
command sequences” [[L8ortunately, contact l&asnce
been re-established).

3.2. Automated Verification of Plans’ Temporal
Constraints

The rapid analysis approach of the first pilot gtucs
identified & havingpotential application to V&V of DS-
1's planner. However, the first pilot syutad examined
traditional design information (interface diagrams and test
logs), so there was uncertajirds to

1. Creation of database schema to repregemplan’s
activities. This was confirmea te a straightforward,
manual task.

Loading the database with plan activities. This was
made a completglautomatic step in this pilot study.
The anount of effot to do this wa snall, in part
because both plannend database happened te
implemented in the same programming language
(Common Lisp). Had there not been this fortuitous
coincidence of a common implementation language, it
would have beae necessar to develop code to parse
and translate between linguistic forms. At worst, this
would have been a modest standard programming

2.

whether the same approach wou T
work for the planners output (i.e., Goals & initial
plans). conditions > activities
A second concern was motivate| PLANNER | PLAN L plan
by the Icrl'tlcal resource of planne constraints >
experts' time. Ta first author, who Dat hems 5
was not a planner expert, chaone alapase scheme A.utomatic
the V&V research. Development o 3 Manual 1. Manually created loading of
an automat_dz pan chgcker would translation database
clearly require some investment o DATABASE
trllrg,\?n?ﬁcthh')e planner experts - bu databasqueries data
A pilot stud/ to investigate this 4. Automat analysis
potential was conducted. It sought 1 , . o
answer two questions: Query results (confirmations or anomalies)
basCec:jugjnal;/gﬁs ags;[gzgasee- Figure 2 — Architecture of Secad Pilot Study

task.

3. Translation of constraints. Representative planner
constraints were selected for hand-translation into the
equivalent database queries. The wgtudtvealed
translation & be feasible, although a somewhat
detailal process (see Appendix A).

4. Analysis. As before, analysis was automatic, yielding

reports of confirmations and anomalies. Importantly,

this stug confirmed that the database approach
scaled sufficienyt wel to efficienty analyze
representative plans. (The sjudsed actual plans
produced during test rgof the DS-1 planner.)

3.3. Conclusions drawm from secand pilot study

The stug answered affirmativgl its first question. It
demonstrated the feasibjlitof automating checkop of
plans. Ths was recognizedot be ax onerous task to
perform manually, and yethorough checkig o plans

dictated tha it be done (for more discussion of the |

rationale, see [8]).

The secod guestion was also answered affirmatively.
Interestingly, while the amount of tam epended by
planner experts on this task remained well welbat
expendd by V&V expert, it was noticealgl higher than
had been th @ase for tle first pilot study. Generally, we
attributed this to the need to delve into more application-
specific details, resulting in the need for mapaching of
the V&V tool expert ly the spacecraft planner experts.

lllustrations and further discussion are presented in
Appendix A.

4. Development of analysis tool

The success of the second pilot gtietl to the next phase
—a @ommitment to develop an analysis tool that would be
usel during testirg o the planner ¥ the planner experts
themselves. While this might appear lte just a small

development of a tool that the project wouldyrepon
during testing.

The positive results of the pilot studies were necessary
precursors to tlsi commitment. Additionally, our
realization tha the analyzer employed an extensible,
general-purpose language gave us a justification of why
we ould extrapola those positive resudtto the entire
planner constraint language.

Developer ard end-user different people:The pilot
study tools were develogk primarily by the V&V
expert, and uskby that same person. In contrast, this
phase committed to the development of a tool that would
be applied b the planner expestwith little, if any,
involvement of the V&V expert during use.

This motivated two extensions to the approach
demonstrated in the second pilot study: (i) automating
the translation from planner constrairinto database
queries, and (ii) rendering éhoutpus of the aalysis
step in terms understandableytthe planning experts.

End-user agenda: the DSi panner experts
constructed an agenda of capabilities/tesired of the
to-be-developed tool. Thifeatured a prioritized list of
capabilities, such thathe capabilitiesd be developed
sooner would be the ones yhpredicted would be of
more value to them.

The preceding pilot studies had helpeg groviding
illustratiors of the kind of analyses that could be
accomplished employing this approach.eThact that
those illustratios were in terms of DS-1 specific
information contributed to their (the planner experts)
ability to see its potential. Tlyewere thus able to
formulaie ax agendatathis stage, supplanting what was
previousy the V&V tool experts guessas to what
analyses might be interesting and/or valuable.

The achitecture of the system developed in this phase

is shown in Figue 3. For the remainder of this paper we

extension of the previous
phase, there” were - sever Goals & initial I
important ramifications of this ~onditions L activities of
transition from pilot stud to PLANNER |—{ PLAN plan& their
actual development: Constraints&. - rationale
+ Reliance upon tre result: type checking .
The pilot shadowed thd Database schema ﬁ)’ leij:gg?t'c
. 1M Il ted
actual spacecraf 3. Automatik anually create database
development effort, but did translation
not promise to yield resultg
upon which that developmen ' DATABASE l data
effort would rely. Indeed, & database querie

valid result of the pilot study
could have been tha the

approach was infeasible. I
contrast, trs phase
committed to the

Query results (confirmationsith justifications or anomalies)

Figure 3 —Planchecker Architecture (changes from 2nd Pilot Study showrbinld

4. Automatic analysis

will refer to this g/stem as th “planchecker”. It has the planchecker tool (use of whicls discussed in # next
same stagessathe second pilot study, but with some section). We therefer onfirmed the validig of the
additional capabilities: conclusions drawn from éhsecor pilot study. We also
« Additional analyses: the planner experts asked for gained some further insights. These fell into two key
further analyses beyond temporal constraints, notablyareas:
typechecking of plan elements, and cross-checking ofe The secod plot study had suggested thathe

plan activities againistheir rationale (information on translation from planner constraints to database queries
which is included in tle generated plans). These would be straightforward. In practice, automating the
required loading additional information from pfainto translation of the full planner language turned toube

the database, and development of additional database more mmplex than th pilot studs had indicated (see
queries. Appendix B for examples). Whdlaprocedural approach

e Automatic translation: there were over 200 to programming tl planchecker’s translator sufficed to
temporal planner constraints (counting each lowest-level meet the development goals,ew®ncluded that
clause as am onstraint). Based on the observations of translation warrants further attention. We will return to
the secod pilot study, we recognized thamanual this in Section 6, Lessons Learned.
translation of the whole set would be a tedious task.s In practice, testers need analysis resulith more
Worse yet, w expected the set of planner constraints to content and structure than simpfpass” or “fail”.
grow and change over timen keeping with our overall Again, details can be found in Appendix B, and
goal of judicious use of automation, it was decided build discussiongdeferred to Section 6. Lessons Learned.
an automat translator that would takany constraint .
expressible in the planner langeagnd enerate the 2 Use of analysis tool

equivalent database query. The planchecker was useq the second author (a
Extended output: the planner expestwanted the planning expert) during testing. Interaction witle ¥&V
query resuls to report more than Sirripf‘OK" when a expert was not required during$iin'hase_
plan passed the checks. In essencey thanted a The planchecker was applied to check hegdan
justification forwhy a temporal constraint wastisfied. generated. Its results were accumulated alongside other
For examplea onstraint that says eweBEP-thrusting statistics about the plageneration, e.g., olong it took
intervd is followed b)/ an SEP-idle interval would be to generate the p|an, womuch memoy was required to
JUSt|f|Ed W |iSting, for each SEP-thrUSting interval, the do so. It was easto appy in “batch mode” to a whole
specific SEP-idinterval found to satiyfthe constraint. series of p|ans_ It was to|er&b‘3ﬁicient, taking on the
Coverage analysisithe planner expestalso wanted order of 2 minutes to completeetcheckirg of a typical
to know which of the planner constramthad been plan.
exercised in the plan. For example, yorglans that Over the @urse of use, several sets of changes were
involved intervals of SEP thrusting would exeecia ~ made to the planner constraints. Re-translating the entire
constraint of the form “evgrthrusting interve must set of constraints, to geneeat nav instance of the test
” oracles, easgil accommodated these changes. On these
occasions the V&V tool expert was on hand. The re-
translatiors went smoothly, with ol one instance of the
The development effort did indeed culmimanh the need to step in and mak ®rrective modification. There

4.1. Insights gained fran development experience

Manual Goals & initial activities
. conditions > of plan
Conceptual decomp03|t|9n PLANNER L PLAN [2
constraint and expressior
(natural Constraints [] rtomat
language) Database schema loading ¢
Manual databast
expression

DATABASE <
> data

Database query

Automatic analysis
Figure 4 — Extended use of Plancheckdextensions shown imold) Query results

were e/en changes to the plan format, in response to
which the V&V tool expert had to (manually) adjust the
corresponding portions of the planchecker system.

The second author (a spacecraft planner expert)
extended the planchecker in a particylaitteresting

manner. On occasion, the writers of planner constraintsfollowed an

had found it necessato manualy decompose a fairly
obvious constrainthat they want the plars to exhibt into

a setof constraints that the planner would accept, and that
in combination would achieve the original constraint. The
need to do this stemmed from the limited fermof
expression allowed in the planner constraimnguage.
Because the database quanguage was not so tightly

follow an "on-demantpolicy of knowledge acquisition.

At the start of the project the V&V expert lacked a
complee and fully documented specification of éhask
(i.e., plans and the planner language). Furthermore, the
domain experts’ tira was vey limited. In response, we
“on demarid approach ¢ knowledge
acquisition, where the V&V expert would proceed as far
as possible before making the next enguoirthe planner
experts. This made gdouse of the planner experts’
limited time and availability, since it kapthe sum total of
their time small, consumed it in small chunks, and could
be done asynchronoysl(e.g., va email exchanges,
supplementedybbrief telephone calls).

constrained, it was often possible to hand-express the We benefited from thexistence of numergusample

original constraint into aingle database query. This could
then be applied to automatigalthed plans. Doing so
gives increased confidence iretalidity of their manual
translation of the original constraiimto multiple planner
constraints. Figure 4 shows ethachitecture of this
extended use of the planchecker.

The implications of ttd are twofold: (1) a planner
expert was able to master the use efdatabase language
and the special-purpesonstructs added to represent and

inputs (plans and ganner constraints). Also, ¢émature of
the task cleayl circumscribed th aess tha the analysis
expert would have to master.

We found it useful to work from an example plan that a
planner expert had alrepdetted as being correct. If the
planchecke reported faults with such a plan, the V&V
expert would knev that mos likely there was an error in
his own understanding, orshcoding o the planchecker
itself. Any remaining anomglthat the V&V expert could

reason about plans. Seeing familiar examples (translationsiot resolve would then be a plausibtandidate for a

of the standard constraints) helped in achieving this level
of understanding. (2) & planchecker architecture
facilitates such extensios — specifically, automatic
loading o plans into tle database, and automatic

genuire plan anomaly, something the plan expert was very
interested in!

V&V Lesson 1: Encourage and Use Redundancy
and Rationale

evaluation of database queries, can both be reused. (Of V&V can make good use of redundancy and rationaje’

course, the translator from planner constrdanguage
could not be reused, because thiginal constraird were
not expressible in thdanguage.) Thnet resul is extra
validation at the cost of vglittle extra time and effort.

6. Lessons learned

The lessons we dma from this experiece ae

to increase assurance in the V&V results, and to assist in
the development of the V&V technology itself.

Each plan generaldyy the spacecraft planner contains
both a schedule of activities, and a rationale relating those
activities to tle ®nstraints taken into account in their
planning. Checking both of these might appear redundant

— surey what realy mattes is whether or not a plan

presented next, beginning with those related to generakatisfies all te onstraints. Nevertheless, we found this

software engineering principles,
specific to V&V.
Software Engineering Lessa 1: Pilot Studies

Our experience re-iterates several well-understood
virtues of pilot studies as a precursor to actual
development.

Pilot studies provid evidence of feasibility, serve as
prototypes and yield examples, which inspire suggestions
for extensions, further applications, etc.

In addition, we found it usefuto formulae a
justification of wty the pilot stug approach would extend
to the full problem. Such a justification nicely
complemented the evidence provday the pilot studies’
specific cases.

Software Engineering Lesso 2: "On-Demand"
Knowledge Acquisition
When damain experts’ time is a critical resource,

follodve by those

redundancy to be useful in two ways:

1. The planner expestgained additional assurance that
their generated planwere rrect, in particular, that
they generated the “right” results “for the right reasons.”

2. The V&V tool expet made use of the redundanio
extend (ad debug) his understandjnd the task. Every
constraint that the planchecker identified as being
involved had ¢ be identified in the plan’s rationale, thus
forcing the plancheckeote complet axd correct in its
treatment of rationales. Likewise, eyerconstraint
mentioned in terationale hadd ke seend ke involved
by the planchecker, tlsuforcing the plancheckerd be
complet and correct in & treatment of constraints. This
helps assure that the planchecker is not reporting “false
positives” (plas judged & correct which are actually
incorrect). [2] describes false positives as more serious
than false negatives. He suggests “...a thorough system
of document reviews ...can mitigate the risk of these

false positives.” Our experience indicatest tmachine- mack etensive use of translation betwegotations. For
generated rationalcan provié abasis for automating example, tie loading of a plan into #hdatabase was a

some of this revi@ process. simple translation from plan format ;nthatabase schema
V&V Lesson 2: Database-based Analysis format.
The use of a databases ahe underlying analysis In the pilot studies, it sufficed to perfor these
engine has practical applications and benefits. translatiors manually, or to devefm procedural-style code

Based on the first of our pilot studies we had made theto automate the translationn Idevelopment of the
argument that database-based analysis wadted to planchecker, translation from planner constréamguage
“lightweight” V&V [7]. The success of this whel dfort to database qugr language was as programmed
strengthemour belief in this position, and highlights some procedurally, but, because of ethomplexity of this
further benefits. translation, thé had some untoward consequences.

The database approach suggests a naturaNotably, the procedural code was hasdubderstand and
decomposition of the problem into: translating the V&V maintain.
conditions into database queries, loading the data into the We believe that for translation of this complexity, a
database, performing éhanalyses, red cenerating the more declarative style would be superior. In one such
reports. Thé smple architectue nicely separates the key approach, translation wouldebexpressed as a set of
steps. For example, in response to a chamdormat of translation rules, execuwteby a general-purpose rule
plan structures it sufficed to modifthe planchecker's engire (e.g., POPART [17]). We would hope that such
database loading portion. Also, this architecture facilitated translation rules are reaglilcreated, understood and
the planner experts’ extentlese of the planchecker (i.e., maintained.
their checking of complex conceptual constrsity A desirable objective is that planner experts, guided by
manualy expressing them as database queries). the translations of their planner constraint language, would

The database itself is used as intermgdiagtween readily see hw to use and write additiohdranslations.
analysis and report generation steps. The plancheckePerhas they could even g on to use the same approach
places analysis resalback into the database, alongside to extend the planner constrailanguage itself, i.e., to
the original data (plapsfrom which those reswdtare automatical}y translate the formal expression of a
derived. Thgthe report generation phasestuaiform and conceptual constraint into the set of simpler constraints
simultaneous access to hokinds of data regardless of that the planner language currgratcepts.
source, considerapfacilitating the report generation task. We ake currently pursuing approaches to development
V&V Lesson 3: Analysis Results Need Structure and use of translators. The planchecker’s translation will

Test oracle ould yield resuk with far moe mntent ~ Serve as a challenge problem forsteffort.
and structure than simply “passed” or “failed”. ;

During the pilot studies it had sufficed to yield analysis 7. Conclusions

resuls with trivial structure — thereported either thahe Our work follows the trend towasdthe use of

object had “passed” ¢hanalysis test, or had “failed due automation for generation of test automation. For
to....” (with some simple distinctions among failure example, [14] presents an approach to generating test
cases). oracles from specifications. [9] present an industrial

The planchecker development entailed the generationapplication feasibilif study on automaticajl constructing
of analysis results and reports with considgralore testing software for safetproperties. Efficieng (and
structure to both the “passed” and “failed” cases. Fortherefore scalability) of the test oracles themselves is a
example, reports that identifi@ehich constraints ha been dominant concern in much of the related work.
exercised pa plan, and that distinguishbdwconstraints ~ Commonly, safst properties (typicall expressed in some
had been satisfied: those that were whsétisfiel by the form of temporal logic) are turned into finite state
plan, those that deferred semmndition to activities machines whas onstruction ensures their efficignof
beyond the plan’s horizons, etc. execution (e.g., [5]). For our particular application, the

We suspect that there gnde general principles by efficiengy of the test oracles did not turn ouwt be a
which test oracles can beilbbuo yield such structured driving concern. Our database-based approach to analysis
analysis results, an area we think is werthf further sufficed. More important to suwas the investment of
attention. effort that would be requite o our domain experts,
V&V Lesson 4: Translation is the key whose time was in short supply. Shéd us to automate

Translation between notatieims a recurring need, and the generation of test oracles from a domain-specific
ideally should be done in suca way as to support representation. Thus the domain experts’ efibiwould
understanding, specification and maintenance by domaintake to construct that generator became out dominant
experts. concern. Approaches that could reduce thisl lkdheffort

The planchecker, and the pilot studies that preceded itinclude tre parameterized tableaus [4], orethlgebraic-

signature based mappings of [13]. We found, however, theAutonomous Planner through Extended Automation.
need to yield needed test resuliith finer distinctions Proceedings bthe 23' Annual Software Engineering Workshop
than simpy “passed” or “failed.” Information about (NASA Goddard, MD, December 1998).

“passed” cases was useto for test coverag aalysis, [9] L.J. Jagadeesan, A. Proter, C, Puchol, J.C. Ramming &
and for ascertaining thahe test ha been passed “for the L.G.Votta. Specification-based Teslind Reactive Software:
right reasons”. Information about “failed” cases was Tools and Experimentd?roceedings othe 19th International
usefl to locate the relevant portions of the plan Conference on Software Engineeri(@pston, MA, My 1997),
contributing to those failures, and so speed the domain®25-535.

expert in debugging what was goingong in the planner. [10] B. Pell, D.E. Bernard, S.A. Chien, E. Gat, N. Muscettola,
We ae not aware of work on automatic generation of p.p. Nayak, M.D. Wagner & B.C. Wiliam& Remote Agent

test oracles that suppsrthis capability. Based on our
practical experience of application of test

oracle conference

Protoype for Spacecraft Autonomiproceedings of the SPIE
on Optical Science, Engineering and

generation, we see the need for further investigation of/nstrumentation1996.

this area.
8. Acknowledgements

[11] B. Pell, D.E. Bernard, S.A. Chien, E. Gat, N. Muscettola,
P.P. Nayak, M.D. Wagner & B.C. Williams. An Autonomous

The research described in this paper was carried out byspacecraft Agent PrototypeProceedings First International
the Jet Propulsion Laboratory, California Institute of Conference on Autonomous Age®€M Press, 1997.

Technology, undera ntract with tke National
Aeronautics and Spa alministration. Reference herein to

arny specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, doe

not constitute or impl its endorsement ybthe United

YEEE

[12] http://nmp.jpl.nasa.gov/dsl/tech/autora.html

[13] A.A. Reyes & D.J. Richardson. Specification-Based Testing
of Ada Units with Low EncapsulatioiProceedings bthe 13"
International Conference on AutontateSdtware
Engineering(Honolulu, Hawaii, October 1998), IEEE Computer

States Government or the Jet Propulsion Laboratory,society, 22-31.

California Institute of Technology.

The authos thank the other members of the DS-1 [14] D.J. Richardson, S.L. Ah& T.). O'Malley. Specification-

planner team, Nicola Muscettola and Kanna Rajan, for

their help.

9. References
[1] J.F. Allen. Maintaining Knowledy &out Temporal
Intervals.Communications of the ACM6(11):832-843, 1983.

[2] J.H. Andrews. Testm wing Log File Analysis Tools,
Methods, and IssueBroceedings fothe 13" IEEE International
Conference on Automated Software Engineer{itpnolulu,
Hawaii, October 1998), IEEE Computer Society, 157-166.

[3] D. Cohen. Compiling Complex Database Transiffriggers
Proceedings othe ACM SIGM® International Conference on
the Management of Dai@ortland, Oregon, 1989), ACM Press,
225-234.

[4] L.K. Dillon & Y.S. Ramakrishna. Generating Oracles from
Your Favorite Temporal Logic SpecificationBroceedings 4
ACM SIGSOFT Symposium Foundations of

117.

[5] L. Dillon & Q. Yu. Oracles for checking temporal properties

of concurrent systemsProceedings ¥ ACM SIGSOFT
Symposim Foundations of Software Engineerifigew Orleans,
December 1994), ACM Press, 140-153.

[6] http://nmp.jpl.nasa.gov/ds1/

[7] M.S. Feather. Rapid Application of Lightweight Formal
Methods for Consistegc Analyses. IEEE Transactions on
Software Engineering?4(11) 949-959, Nv 1998.

[8]. M.S. Feather& B. Smith. V&V of a Spacecraft's

based Test Oracles for Reactive SysteR®ceedings fothe
14th International Conference on Software Engineering
(Melbourne, Australia, Ma1992), 105-118.

[15] SOHO Mission Interruption Preliminary Status and
Background Report - July 15, 1998
http://lumbra.nascom.nagav/'soho/prelim_and_background_rep
t.html

[16] H. Wasserma& M. Blum. Software Reliabilit via Run-
Time Result-Checking. JACM 44(6)26-845, 1997.

[17] D. Wile. Abstract Syntax from Concrete Syntax.
Proceedings bthe 19th International Conference on Software
Engineering(Boston, MA, My 1997), 472-480.

Appendix A - Details of the second pilot study
A.1l. Example d planner constraint

The following example of one of the simpler plan
constraints, siexpressed in thplanners gecial purpose

A _ Software |anguage, will conve a feel for tte dallenges faced in
Engineering(San Francisco, October 1996), ACM Press, 106-

this pilot study:
(Define_Compatibility
;) ldle_Segment
(SINGL E ((SEP_Schedule SEP_Schedule_SV))
(Idle_Segment))
:duration_bound
:compatibility_spec
(AND
;T hrust and IdI
meet--n 0g aps
(meets
(SINGLE
((SEP_Schedule SEP_Schedule_SV))
(Thrust_Segment (?_any_value_
?_any_value_)))))

s[1 _plus_infinity]

es egmentsmus ta |l

(met_by (SINGLE
((SEP_Schedule SEP_Schedule_SV))
((Thrust_Segmen t(?_any_value_

?_any_value_)))))))
This illustrates ®veral areawhere knowledge held by

the planner expeshad b be acquired the V&V expert:

» Overall application domain knowledge:“SEP’ is an
acronym for “Solar Electric Propulsion,” the innovative
engire that provides thrusto DS-1. “Thrust " and
“Idle " are the two main states gengire can be in.
Knowledge such s this of the spacecraft domain
provided useful intuition to tle V&V expert, and this
secom pilot study warranted a deeper level of
understanding than Habeen necessay for the first pilot
study.

Problem-specific terminology: “SINGLE’ has a
connotation specific to DS-1's plannet.ithtroduces a
description the matches a single interval. (One
alternatives is MULTIPLE,” introducing a description
that matches a contiguous sequence of intervals).

Terminological variants: The overall definition is of
a “compatibility.” The V&V expert preferred to thinof
this as a “constraint,” in keeping with the terminglag
the database tool. Another examples ithe
“?_any value " term, which serves as a wildcard,
indicating aty acceptable parameter valueyracur in
the @rrespondig parameter position. Again, the V&V
expert had th exact sara oncept, but preferred a
different syntax.

Confirmation of shared understanding: there were
some aresof shared understanding, but these hmabet
confirmed, no taken for granted. A trivial example is
“AND, which in the above is used to indicatettitize
constraint [compatibility] holds if all of # dauses of
this ANDhold. More interesting are the terma€ets ”
and ‘met-by ,” which are binay temporal relations
between intervals, drawn from the wonkAllen [1].

The net result was thdhe V&V expert required an

activity. For evey instance of an
the

an ldle_Segment
activity in the plan matching that description,
constraint requires thahe logical condition(AND . ..)
is true. The logical condition is ¢h onjunct of two

clauses. Thafirst says that the matching instarmoeets a

Thrust_Segment activity, i.e., the end-point of the
Idle_Segment activity exacty coincides with the start
point of someThrust_ Segment also in the plan. The
second says thathe matching instance isnet by a

Thrust_Segment activity, i.e., the start point of the
former exacy coincides with the ah point of the latter

Pictorially,

Thrust _Segnent | 1dl e Segnent |Thrust _Segnent
|3
rret_}ls/ maey
For translation, this si lit into two separate

constraints, one for each clause og ttonjunct. This
allows tre checking 6 be onducted separateffor each
conjunct, so that ananomay in a plan can be narrowed
down as muchspossible. The translated form of the first
such conjuntclooks close to th following (it has been
tidied up slighty for presentation purposes):
(A(x)(IMPLIES

(activity-in-plan x Idle_Segment

SINGLE SEP_Schedule)
(E(y)(AND (activity-in-plan
Thrust_Segment SINGLE SEP_Schedule)
(meet sxy)))

A and E are the database’s notations foe thgical
concepts for-all and existtMPLIES and AND have the
standard logical meaningactivity-in-plan is a
ternay relation (defined for plan checking) that relates an
activity name (e.g.,Thrust_Segment) to a keyword
(e.g., SINGLE) and schedule (e.g.SEP_Schedule).
meets iS a binay relation (again, defined for plan
checking) that relates two activities if andyoiflthe end
point of the first coincides exacafl with the start point of

intensive session of coaching on the meaning of thethe second.

planner notatios (plans and constrdinlanguage) &athe
start of this pilot study, and incremental assistar
various poing throughout. Overéalthis did not amounto
an undue consumption of planner experts' time.
A.2. Example d Translation from Planner
Constraint to Database Query

Consider thedle_Segment constraint given earlier.

Its essential coresthe following:
(SINGLE ((SEP_Schedul e. ..(Idle_Segment))
:compatibility_spec
AND

(meets (SINGLE ((SEP_Schedul e. .
(Thrust_Segment (?,?)))
(met_b y(SINGLE ((SEP_Schedule ...
(Thrust_Segment (?,?))))
The fragmerg (SINGLE ((SEP_Schedul e
introduce descriptiogthat are to match to activities of the

SEP scheduled in ¢tplan. The first sut description is of

For this pilot study, some of the neommplex planner
constraints wer dso selected for hand-translation. Their
additional complexit stemmed from references to
activities’ parameter values. For examg@lapnstraint that
says that ever Max_Thrust_Time interval whose %

parameter | 100 must end an
Accumulated_Thrust_Time interval whose parameters
are respectivgl 100, 0, the same value as
Max_Thrust Time interval's 2 parameter, and

WHILE_NOT_THRUSTING

Appendix B - Details of the planchecker
development

B.1. Automating the translation from planner
constraints to database queries

The hallmark of ths task was tk need to deal with
mary small (and to the V&V tool expert often surprising)

details. Most commonly, these were detaf the plan
constraim languag tha the V&V tool expert had not
encountered earlier. € representative sample of
constraints hand-translated ineteecom pilot study did
not cover the full range of constraianguag @nstructs.
The discovey of thee @ame to light when the partially
developed planchecker was applied to increagingbre
of the entire set of DS-1 constraints, and to increasingly
mary of the plans that Rh been generated. They
manifested themselves in one of three ways:
e Error (break) during translation, loading or
analysis. For example, if tB constrain translator

encountered a variable in a location where it expected Bsimply

constant. Generally, these weras to find and

False positives — failure to detect anomalie§he
surprises that were hardest to recogrdad understand
were those concerning faikio detect anomalies.

The redundanc of the information m pans was
especialy usefd to help detect thes@ases. See V&V
lesson 1 (in section)%or discussion of this issue.
Additionally, the V&V tool expert followed the
traditional approach of seedjngenuine plas with
deliberate errors, @hobserving whether # aalysis
caught them.

B.2. Structure analysis results

The need to structaranalysis resultsa be more than
pass” / “fail’ was a strong theme of the

planchecker development. Serakamples of the need for

understandA break in the middle of analysis required i4is are as follows:

some simple debugging-Blactivity to trace back to the
underlying discrepancy. Since the database was
implemented on top of Common Lisp.etpowe run-
time environment available in ¢hmiddle of a break
made thstask fairly simple.

All these @ses resulted in a singpfjuestion tha the
V&V expert would ask of tB spacecraft planning
experts (e.g., “what does it mean t@ wsvariable name

as a range value where norrgathere & an explicit
integer?”)

False alarms - spurious anomalies detedate by
analysis Often the automated steps would complete, but
would report a whole host of (as it tucheut, spurious)
anomalies. The V&V tool expert genesalhterpreted a
large number of anomalies te indicative of a flev in
his understanding, rather than a grgssicorrect plan.
Indeed, genui@ plan anomalies were soweand far
between that this was an effective working hypothesis.
The aucial issue in thes @ases was finding the
underlying cause of the spurious anomalies. The V&V
expert would spend time to nawodown the likely
cause of a reported anomaly. This culminated in a
question to ds of the spacecraft planning experts. For
example, suppose thivas the first analysis of a plan
that exercised default interval range values for one of the
temporal relationships. An “anomaly” that could be
traced backd ane of these defaults would be indicative
of a misinterpretation of what the default stibbé. The
V&V expert would then kna to ask a specific question
about that default value.

This was a somewhat labor-intensive process for the
V&YV tool expert. Is benefit was that it ensured that the
planner expertqvery limited) time was not squandered
unnecessarily.

All the DS-1 planner constraints take the overall
form: for evey activity-1 tha matches description-1
there ists an activity-2 thiamatches description-2. A
constraint of ths form is trivially satisfied if the plan
contairs no activities matchip description-1. The
planchecker separates trivial and non-trivial cases in its
reports of constraint satisfaction.

The DS4 panner generates plans for a segment of
the eitire mission (e.g., one week). Tha plan is
bounded within some “horizon”- it has a start and an
end. Yet, tle constraing may extend across this planning
horizon. Such an instance is reported as a specigldkin
constraint satisfaction in which the plan satisfies the
constraint within i horizon, but defer ®me residual
checking for the next plan. The details of all such
deferred checks are included withinethlanchecker’s
report.

In an eany version of the planner, a vieof the
constraints referenced information thatbot stored in
plans. In essence, this extdrnaformation drected
which one of several constranis to apply. The
planchecker’'s constrdin translations handle these
circumstancesyochecking each alternative. If all fail, it
is an anomaly. If the plan is found to satishe of the
alternatives, again, a special #ind constraint
satisfaction s reported, which included ¢hdeduction of
wha the eternd information must be to direct the
choice of the satisfied constraint.

The deta® are domain-specific, but we see a recurring
need to make distinctions among classes of “pass” reports,
and structure the analysis results accordingly.

